Search published articles


Showing 4 results for Raoufi

Salma Bessalah, Samira Jbahi, Mouldi Zagrouba, Hajji Sawsen, Amel Raoufi, Mustpha Hidouri,
Volume 19, Issue 2 (June-Biomaterials Special Issue- 2022)
Abstract

Abstract
In this research, Gelatine (GEL)/ Chitosan (CH) wound dressing was prepared and irradiated with gamma rays from 60Co source for wound healing applications. GEL-CH composite characterization and functional properties were determined. The structural changes occurring after γ-irradiation at doses from 5 to 25 kGy were reported by physico-chemical techniques such as Electron Paramagnetic Resonance (EPR), Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Electrochemical Impedance Spectroscopy (EIS) studies. The antioxidant capacity was studied using DPPH (1,1-diphenyl-2-picrylhydrazyl free radical) scavenging and the antibacterial activities of Staphylococcus aureus and Escherichia coli were observed using liquid medium. Results revealed that EPR spectroscopy of un-irradiated GEL-CH showed 2 paramagnetic centers correspond to g=2.077 and g= 2.079. After irradiation, no active centre was appeared. A dose-dependent decrease in the central signal intensity was detected, then the EPR signal intensity almost disappears at 20 kGy. Gamma rays caused a slight increase in ion conductivity. FTIR suggest a slightly crosslinking phenomenon at 20 kGy. The XRD analysis does not show peak indicating crystallinity between a range of 2θ (15–30°). Moreover, γ-irradiation elevated the Scavenging DPPH radical activity (0.75 ± 0.07%). Gamma rays did not affect the antibacterial activity of GEL-CH wound dressing against pathogenic bacteria. The innovative results showed that the required γ-radiation for sterilization was ranged from 5 to 25 kGy. It permits to improve the physico-chemical and biological properties and maintain the native structural integrity of the GEL/ COL wound dressing
Salma Bessalah, Jebahi Samira, Amel Raoufi, Asim Faraz, Mouldi Zagrouba, Mohamed Hammadi,
Volume 19, Issue 2 (June-Biomaterials Special Issue- 2022)
Abstract

Abstract
Gelatin (GEL) is most extensively used in various fields, particularly in therapeutics and pharmaceuticals. GEL was extracted from goat skin using hot temperature extraction process and compared with that of commercial GEL. The physico-chemical characterization and functional properties were investigated by using temperature denaturation (Td), water-holding and fat-binding capacities (WHC and FBC), colour measurement and UV-light spectrum. In vitro biocompatibility was studied for the first time and was evaluated by blood coagulation index (BCI) and haemolytic tests for using as wounds dressing. The results revealed thermal stability of goat GEL at Td 37°C. WHC and FBC capacities represented 2.5 and 1.2 g/ml, respectively. The hunter colour spaces a*, b* and L* showed a -0.27, -1.97 and 25.23 values, respectively. UV-Vis absorption spectrum of the goat GEL showed a maximum absorption peak at 280 nm. The in vitro anticoagulant activities of extracting GEL were higher than 70% after incubation for one hour. After being in contact with red blood cells for 1 h, the haemolysis ratio increased from to 0.46 to 1.4 when the concentration of goat GEL increased from 1 to 50 mg/ml suggesting the safety of the tested samples. These results suggest that thromboresistivity and hemocompatibility of this biopolymer retained the biological activity of our samples for biomaterial applications. According to this, goat GEL successfully competes with, and significantly could be useful for substitution of bovine in wound healing.
Mohammad Porhonar, Yazdan Shajari, Seyed Hossein Razavi, Zahra-Sadat Seyedraoufi,
Volume 20, Issue 3 (September 2023)
Abstract

In this research, after pressing in a cylindrical mold, the AA 7075 alloy swarf was melted and cast in a wet sand mold. After rolling and cutting, sheets with two different thicknesses of 6 and 20 mm were obtained. The sheets after homogenization were solutionized at 485°C for 30 and 90 minutes, respectively, due to differences in thickness and thermal gradients. The solutionized samples were quenched in 3 polymer solutions containing 10, 30, and 50% Poly Alekylene Glycol. The results showed that melting, casting, rolling, and heat treatment of AA7075 alloy swarf similar properties to this alloy is achievable. Microstructural studies by optical microscopes (OM), Field Emission Scanning Electron Microscopy (FESEM), and X-ray diffraction (XRD) showed that by increasing the quenching rate after the solutionizing process, precipitation increases during aging. The tensile test results indicated that as the quench rate and internal energy increase, the diffusion driving force would increase the precipitation of alloying elements. Hence, this leads to an increase in hardness and reduction of its strain after aging.
Mahdi Rajaee, Mahdi Raoufi, Zeinab Malekshahi Beiranvand, Abbas Naeimi,
Volume 22, Issue 2 (JUNE 2025)
Abstract

This research explored the impact of the nickel-to-manganese ratio and the influence of the matrix phase on the properties of W-Ni-Mn tungsten heavy alloys (WHAs), aiming to determine the optimal composition for achieving desirable alloy properties.  For this purpose, tungsten, nickel, and manganese powders with specified weight percentages underwent two rounds of wet milling.  Powder mixtures were obtained with weight ratios of 90W-6Ni-4Mn, 90W-8Ni-2Mn, and 88W-10Ni-2Mn. These mixtures were then compressed through the cold pressing method at a pressure of 250 MPa. Subsequent reduction and sintering processes were carried out in a tube furnace at temperatures of 1150 and 1400 °C, respectively. Microstructural characterization was conducted using both optical and electron microscopy. The results showed that the change in chemical composition is not significantly effective on the sintering density of the samples and also the highest sintering density, reaching 90.11%, was achieved with the 88W-10Ni-2Mn sample. Furthermore, the results demonstrated that carburization of W-Ni-Mn WHAs during the sintering process led to an increase in the micro-hardness of the samples. The highest hardness, measuring 381 Hv, was observed in the 90W-6Ni-4Mn alloy, where carburization occurred. XRD results revealed that an increase in the nickel-to-manganese ratio led to a reduction in the peaks of manganese carbide and tungsten carbide. Consequently, this decrease in carbide peaks resulted in a reduction in hardness, reaching 352 Hv in the case of the 88W-10Ni-2Mn sample. Additionally, the alloys 90W-6Ni-4Mn and 88W-10Ni-2Mn both exhibited the lowest continuity, a value of 0.5. Fracture surface SEM images illustrated that the 90W-6Ni-4Mn alloy, characterized by the lowest nickel-to-manganese ratio (1.5), exhibited the highest trans-granular fracture mode involving cleavage and matrix tearing, which is considered desirable. Furthermore, an increase in the matrix phase content resulted in a shift of the preferred crack path, originating from the matrix phase.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb